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S T A T I S T I C S  F O R  R E S E A R C H E R S

Introduction

In  t h e  p r e v i o u s  a r t i c l e  o n 
t h e  s t a t i s t i c a l  e v a l u a t i o n 

of diagnostic tests –Part 1,  we 
u n d e r s t o o d  t h e  m e a s u r e s  o f 
sensitivity, specificity, positive 
and negative predictive values. 
The use of these metrices stems 
from the fact that no diagnostic 
test is ever perfect and every time 
we carry out a test, it will yield 
one of four possible outcomes– 
true positive, false positive, true 
negative or false negative. The 2 x 
2 table [Table 1] gives each of these 
four possibilities along with their 
mathematical calculations when a 
new test is compared with a gold 
standard test.1

In this article, the second in 
the diagnostic test series, we will 
discuss single summary statistics 
that help us understand and use 
these tests  appropriately both 
in the clinical context and when 
these summary statistics appear 
in literature. Before we discuss 
these, we need to recapitulate a 
few concepts presented in earlier 
articles [odds and probability] and 
also some novel concepts [Bayesian 
statistics, pre-test and post-test 
probabilities and odds]. 

From the example, it follows that
Odds = p/1-p, where p is the 

probability of the event occurring. 
Probability, on the other hand, 

is given by the formula
p = Odds/1+Odds

Bayesian Statistics, Pre-
Test Probability and Pre-
Test Odds

A clinician often suspects that 
a patient has the disease even 
before he orders a test [screening 
or diagnostic] on the patient. For 
example, when a patient who is 
a chronic smoker and presents 
with cough and weight loss of a 
six-month duration, the suspicion 
of lung cancer has already entered 

Understanding Probability 
and Odds and the 
Relationship between the 
Two

Let us understand probability 
and odds with the example of 
a  drug producing bleeding in 
10/100 patients treated with it. 
The probability of bleeding will 
be 10/100 [10%], while the odds of 
bleeding will be 10/90 [11%]. This 
is because odds is defined as the 
probability of the event occurring 
divided by the  probabi l i ty  of 
the event not occurring.2 Thus, 
every odds can be expressed as 
probability and every probability 
as odds as these are two ways of 
explaining the same concept. 
Table 1:  A 2 x 2 table of depicting the results of a new test vis à vis a gold standard 

test

 

 

 Disease 

 

 

Test Present 

 

Absent  

Posi�ve True Posi�ve [TP] a 

 

False posi�ve [FP] b a+b 

Nega�ve False Nega�ve [FN] c 

 

True Nega�ve [TN] d c+d 

 

 

Sensi�vity = a/a +c Specificity = d/b+d 
+c 

Nega�ve predic�ve value = d/d +c 

Posi�ve predic�ve value = a/a +b 
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the physician’s mind. Thus, the 
clinician has already, mentally, 
identified some “pre-test” probability 
of the patient having the disease; 
lung cancer in this case.

Clinical decision-making, by 
and large, requires a combination 
of clinical acumen along with a 
correctly performed and interpreted 
screening or diagnostic test. When 
the physician allocates a “pre-test 
probability”, what he is applying is 
a field of statistics called Bayesian 
statistics. Herein, the knowledge of 
prior beliefs is used and quantified 
as a numerical value ranging from 
0 -100%.3 This value is then used for 
subsequent calculations. Bayesian 
statistics allows us to interpret 
screening and diagnostic tests in 
their clinical context. 

Logically,  the next question 
would be - what are the ways in 
which these pre-test probabilities 
can be allocated? These are listed 
below
• Subjectively based on informed 

opinion, consensus guidelines 
or experience in treating the 
disease in question

• A n  u n d e r s t a n d i n g  o f  t h e 
evolution of the disease and 
matching  i t  wi th  how the 
disease has actually evolved 
in the patient 

• Objectively based on available 
evidence [prevalence data for 
example]

In the example presented, the 
treating physician may assign a 
pretest probability of 60% or even 
higher based on his clinical acumen 
and what  he  sees  in  pract ice . 
How is this calculated? Let us say 
that the clinician is a lung cancer 
specialist and he sees 100 patients 
in three months who are chronic 
smokers with persistent cough 
and weight loss. Sixty of them 
eventually return a diagnosis of 
lung cancer based on one more 
tests. The pretest probability for a 
new patient with a similar history 
and complaints who presents to 
him in the fourth month would 
thus be 60%. 

Mathematically, this is calculated 
as

Pre-test probability = 
N u m b e r  o f  p a t i e n t s  w i t h 

complaints actually diagnosed to 
have the disease 

Total number of patients who 
present with the same complaints

[In this case, it would be 60/100 
or 60%]. 

Pretest odds, however, would 
be 0.6/0.4 or 1.5 (the probability 
of the event occurring divided by 
the probability of the event not 
occurring).

The clinician next orders a test, 
which he hopes, will confirm [or 
refute]  his  diagnosis .  The test 
result and the pre-test probability 
together  wi l l  now be  used to 
calculate the post-test probability 
as described below.

Post-test Probability and 
Post-Test Odds

Since the result of a diagnostic 
tes t  can  be  e i ther  pos i t ive  or 
negative, post-test probabilities 
are either positive or negative. 
Mathematically,
• Post-test probability = Pre-test 

probability x Likelihood ratio 
(see below for explanation), 
while 

• Pos t - tes t  odds  =  Pos t - tes t 
p r o b a b i l i t y / 1  –  p o s t - t e s t 
probability

The Likelihood Ratio  
[A Summary Statistic]

Likelihood ratios [LR] combine 
both sensitivity and specificity 
into a single measure and are an 
alternate way of evaluating and 
interpret ing diagnost ic  tests . 4 
They help in making a choice of a 
diagnostic test or sequence of tests. 
LR essentially tell us how many 
times more [or less] a test result is 
to be found in diseased compared 
to non-diseased people. LRs are of 
two types – positive and negative. 
A positive Likelihood ratio is given 
by 

Likelihood ratio 
[positive] LR+ =

Sensitivity [TP]
1 -Specificity [FP]

while a negative Likelihood ratio 
is given by

Likelihood ratio 
[negative] LR - =

1- Sensitivity [FN]
Specificity [TN]

Let us understand this with 
a n  e x a m p l e .  W h e n  p h y s i c a l 
examination is carried out in patients 
with suspected acute appendicitis, 
there-is-rebound tenderness at or 
about the McBurney’s point, pain on 
percussion, rigidity, and guarding. 
The positive likelihood ratio for the 
diagnosis of appendicitis would be 
the ratio of those with appendicitis 
who have tenderness at McBurney’s 
point [sensitivity] by those without 
appendicitis who have tenderness 
a t  M c B u r n e y ’ s  p o i n t  [ f a l s e l y 
positive or 1- specificity]

OR 
Likelihood ratio [positive] LR+ 
The number of patients with 

appendicitis  who have localized 
tenderness at the McBurney’s point

The number of patients without 
appendicitis  who have localized 
tenderness at the McBurney’s point

The negative likelihood ratio 
LR- would be

The number of patients with 
appendicitis who don’t have localized 
tenderness at the McBurney’s point

T h e  n u m b e r  o f  p a t i e n t s 
without  appendic i t is  who don’t 
have localized tenderness at the 
McBurney’s point

If we were to express both these 
mathematically, based on the 2 
x2 table, these would be as given 
below

Likelihood ratio positive or LR +
The probability of obtaining a 

positive test result in patients with 
disease [TP]

The probability of obtaining 
a positive test result in patients 
without the disease [FP]

On the other hand, a negative 
likelihood ratio or LR- would be 
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The probability of obtaining a 
negative test result in patients with 
disease [FN]

The probability of obtaining 
a negative test result in patients 
without the disease [TN]

Since different tests for the same 
disease have different sensitivities 
and specificities, each test would 
yield a different likelihood ratio 
f o r  t h e  s a m e  d i s e a s e .  L e t  u s 
understand this with an example. 
The diagnosis of prostate cancer 
can be made by both digital rectal 
examination [DRE] and Trans rectal 
ultrasonography [TRUS]. Manyahi 
JP and colleagues5 in their study 
found the sensitivity of DRE to 
be 66.7%, and the specificity to be 
88.6%. The values for TRUS were 
58.3% and 85.7% respectively. The 
LR + for DRE thus would be 5.8 
[.667/1-.886], while that for TRUS 
would be 4.1[.583/1-.857]. The LR- 
for the two tests similarly would 
be 0.38 [1-.667/.886] and 0.49 [1-
.583/.857] respectively. 

LRs range from 0 to infinity. LRs 
more than 1 argue for the presence 
of the disease and numbers further 
a wa y  f r o m  1  s t r e n g t h e n  t h i s 
argument. They, thus rule in the 
disease. LRs between 0 and 1 argue 
against the diagnosis of interest. 
Values of 1 or close to 1 indicate 
that the test may lack diagnostic 
value.  LR- values below 1 indicate 
that the result is likely to associated 
with the absence of the disease.4

While LRs are good measures 
of diagnostic accuracy, these are 
seldom used in clinical practice 
as  t hey  re qu i re  a  k nowledg e 
o f  p r o b a b i l i t i e s  a n d  i n v o l ve 
calculations.  Nomograms such 
a s  t h e  F a g a n ’ s  n o m o g r a m 
[ h t t p s : / / m c l i b r a r y . d u k e . e d u /
sites/mclibrary.duke.edu/fi les/
public/guides/nomogram.pdf] are 
available6 for ease of use of LRs, 
but may not always be available 
for a quick bedside diagnosis. The 
logarithm of the likelihood ratio 
[log likelihood ratio statistic] is 
used to compute a p value and then 
compared with the critical p value 

of 5% that we use routinely use to 
check for statistical significance of 
a LR that is calculated.

Clinical Application 
– putting Together 
Probability, Odds and the 
Likelihood ratio

Having understood the concepts 
of probability and odds, pre-test 
and post-test probabilities and the 
likelihood ratios we need to put all 
of them together to see how they 
actually help in clinical decision 
making; the sequence for which is 
given below
• Calculate Pre – test probability 

(p)
• Derive Pre- test odds as p/1-p
• Conduct the test [screening 

o r  d i a g n o s t i c ]  w i t h  a n 
appreciation of its sensitivity 
and specificity

• See the result – positive or 
negative

• Calculate  Post - test  odds = 
Pre-test  odds x Likel ihood 
ratio [a positive LR is used for 
a positive test and vice versa]

• Calculate Post-test probability 
= Post-test odds/(1+ post-test 
odds)

• Make a decision regarding the 
diagnosis

Let us understand this with 
the same hypothetical example. 
Let us say that a 60-year old male 
pat ient  with 20  pack years  of 
smoking presents with cough and 
weight loss of 6 months’ duration. 
The treat ing physic ian knows 
from literature that the pre-test 
probability of lung cancer is 60% in 
those with 20 pack years or more in 
the 50-75 age group. 
• Thus, pre-test probability = 60% 

or 0.6
We  n o w  c o n v e r t  p r e - t e s t 

probability into pre-test odds 
• Pre-test odds = 0.6/ 1-0.6 or 

0.6/0.4 or 1.5
We now conduct a CT scan [low 

dose] which returns a diagnosis 

of  lung cancer.  In other words, 
the test is “positive” .  Literature 
tells us7 that low dose CT has an 
approximate sensitivity of 80% 
and a specificity of 90%. Thus, the 
positive likelihood ratio would be
• LR +  =  Sens i t iv i ty  [ .8 ] /  1 - 

specificity [1-0.9] = 8 [this LR 
+ indicates that the test result 
is more likely in someone with 
lung cancer  than someone 
without]

We now calculate the post-test 
odds as pre-test odds x likelihood 
ratio
• Thus, post-test odds = 1.5 x 8 = 

12
Finally,  we want to convert 

the post-test odds into post-test 
probability
• i.e., 12/1 + 12 = 12/13 0r 0.92 

or  92% [ indicat ing  a  h igh 
probability that the patient 
has lung cancer]

What if the CT scan results had 
been negative?

Here, the pre-test probability 
of 0.6 and the pre-test odds of 1.5 
would have remained unaltered. 
However, we would now need to 
calculate the negative LR or LR-

Negative Likelihood ratio [LR-] 
= 1- sensitivity/specificity
• Or 1-0.8/0.9 = 0.22

Now, the post-test odds would 
be pretest odds x LR- 
• Or 1.5 x 0.22 = 0.33

Post-test probability would be
0.33/1 + 0.33 = 0.25 or 25% [a 

much lower probabil ity of  the 
patient having lung cancer]

Based on these single summary 
s t a t i s t i c s  [ 9 2 %  o r  2 5 % ] ,  t h e 
physician will take the next steps 
towards management. However, as 
stated earlier, because LRs involve 
tedious calculations that include 
conversion of odds to probabilities 
and thus are rarely used in clinical 
practice.
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Receiver Operating 
Characteristic [ROC] Curve 
and its Interpretation

The ROC curve is a plot of the 
sensitivity or true positive rate on 
the y-axis and 1 minus Specificity 
or the false positive rate on the 
x-axis. Figure 1 depicts the various 
components of the ROC curve and 
these are described below.

The  point  where  the  x  and 
y  ax is  begin  [0 ,1 ]  depic ts  0% 
sensitivity and 100% specificity. 
Both sensitivity and specificity are 
0 [0,0] where the x axis ends. The 
upper end of the y axis would be 
the ideal test with 100% sensitivity 
and 100% specificity [1,1]. If we 
were to draw yet another x-axis at 
the top parallel to the one below, 
its outer end would depict 100% 
sensitivity and 0% specificity [0,1] 
[Figure 1]. The line that connects 
the beginning of the lower x-axis to 
the end of the upper x-axis is called 
the line of equality or random 
chance line where x [false positive] 
= y [true positive]. Thus, any ROC 
curve that appears below this line 
indicates that the test performs 
worse than random guessing. 

Each point on the ROC curve 
represents a sensitivity-specificity 
pair corresponding to a certain 
d e c i s i o n  t h r e s h o l d .  A n  i d e a l 
test would be one that has 100% 
sensitivity and 100% specificity and 
thus the curve will pass through 
the upper left corner [Figure 1]. 
Since no test is really ideal and we 
tradeoff between sensitivity and 
specificity, the closer the curve is 
to the upper left corner, the better 
is its accuracy. The area under 

the ROC curve, is taken as 1 and 
is a useful metric for evaluating 
the performance of a test.  The 
closer the value of the AUC is to 
1, the better is the discriminatory 
ability of the test [Table 2 and 
Figure 1]. Since the curve is based 
on the metrics of sensitivity and 
specificity alone, the ROC curve is 
independent of disease prevalence.8

Applications of the ROC curve- 
Any ROC curve helps serve the 
following four purposes10

a. Finding the cut off that least 
misclassifies diseased and non-
diseased individuals 

b. Assessing the discriminatory 
ability of the test 

c. Comparing the discriminatory 
a b i l i t y  o f  t w o  o r  m o r e 
diagnostic tests for assessing 
the same disease 

d. C o m p a r i n g  t w o  o r  m o r e 
observers performing the same 
test [inter- observer variability]

The Youden’s index [a 
Summary Statistic]

It is useful to summarize the 
information from a ROC curve 
into a single statistic or index. 
One of the commonly used indices 
in the Youden’s index “J”. This 
index gives the maximum vertical 
distance from the line of equality 
to point [x, y] [Figure 1]. In other 
words, the Youden index J is that 
point on the ROC curve that is 

Table 2:  Area under the ROC curve 
and interpretation of the 
diagnostic accuracy of the 
test9

Area under the ROC 
curve

Interpretation of the 
test accuracy

1 Perfect 
0.9-1 Excellent
0.8-0.9 Good
0.7-0.8 Fair
0.5-0.7 Poor

Fig. 1:  A typical receiver operating characteristic curve and its components
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[Reproduced with permission from Indian Pediatrics]10 

Applications of the ROC curve- Any ROC curve helps serve the following four purposes [10] 

a. Finding the cut off that least misclassifies diseased and non-diseased individuals  
b. Assessing the discriminatory ability of the test  
c. Comparing the discriminatory ability of two or more diagnostic tests for assessing the 

same disease  

Worse performance of test in predicting 
presence or absence of disease 

furthest away from the line of 
equality [the diagonal line] and 
maximizes the difference between 
the sensit ivity [true posit ivity 
rate] and the false positivity rate 
[1-specificity].10,11 It is calculated 
by deducting 1 from the sum of 
the test’s sensitivity and specificity 
expressed not as percentage but 
as a part of a whole number. In 
other words, it is (sensitivity + 
specificity) – 1. For a test with 
poor diagnostic accuracy, Youden’s 
index equals 0, and a perfect test 
will have a Youden’s index of 1.

Diagnostic Odds Ratio  
[A Summary Statistic]

The Diagnostic odds ratio [DOR] 
is yet another summary statistic for 
diagnostic accuracy, that is used for 
the evaluation of the discriminative 
abilities of diagnostic procedures 
as  a lso  for  the  comparison of 
diagnostic accuracies between two 
or more diagnostic tests. DOR of 
a test is defined as the ratio of the 
odds of positivity in individuals 
with disease relative to the odds 
of positivity in individuals without 
disease. It is calculated similar to 
the odds ratio as seen in an earlier 
article12 as a cross product from 
the 2 x 2 [Table 1] and given by the 
formula 

DOR = TP x TN ÷ FP x FN
DOR as seen with its calculation 

d e p e n d s  s i g n i f i c a n t l y  o n  t h e 
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sensitivity and specificity of a 
test. A test with a high specificity 
and sensitivity [i.e., low rates of 
false positives and false negatives] 
will have a high DOR. It is also 
important to remember here that 
the same DOR may be achieved 
with different combinations of 
sensitivity and specificity. As an 
illustration, the DOR of 4 can have 
four combinations of sensitivity 
and specificity [Table 4].13

Reporting of Studies 
using Diagnostic Tests - 
The STARD and QUADAS 
Checklists

STARD stands for “Standards 
for Reporting Diagnostic Accuracy 
Studies”  and is  a  checkl is t  of 
n = 30 items developed by the 
S TA R D  s t e e r i n g  g r o u p ;  a n 
independent group of researchers 
who formulated this  checkl ist 
in  an  a t tempt  to  ensure  both 
completeness and transparency 
of reporting by authors and also 
for editors and peer reviewers 
to assess adequacy and quality 
of information. Authors need to 
use this checklist in manuscripts 
that report studies that involve 
sc reen ing  or  d iagnos t i c  t e s t s 
and report ing their  accuracy. 
STARD can be viewed at http://
www.stard-statement.org/.14 The 
Quality Assessment of Diagnostic 
Accuracy Studies (QUADAS - 2) 
tool is a 14-item checklist to help 
in the evaluation of diagnostic 
accuracy studies primarily for 
use in preparing and presenting 
systematic reviews.15

Statistical Tests to be Used 
when Diagnostic Tests are 
Compared

W h e n  t w o  s c r e e n i n g  o r 
diagnostic tests are conducted on 
the same patient, the results would 
amount to “paired” data and since 
the outcomes are either positive or 
negative, these constitute “binary 
outcomes. The McNemar’s test is 
used for this type of comparison. 
When these two tests are conducted 
on independent populations, then 
we use the chi-square or Fisher’s 
exact test.16

Understanding Biases 
when Using Diagnostic 
Tests - Spectrum Bias 
and the Imperfect Gold 
Standard Bias

A n  i m p o r t a n t  a n d  o f t e n 
overlooked aspect of diagnostic 
tests evaluation is spectrum bias. 
In general, patients who present 
later in the course of a disease are 
easier to diagnose than those who 
present early, as with the latter, 
signs maybe subtle and difficult to 
pick up. Spectrum bias is a form of 
selection bias that results when a 
test is used for a disease that has a 
wide spectrum of severity.17 Thus, 
values of sensitivity and specificity 
obtained for any test are driven by 
the population that is being studied 
and different populations would 
yield different values of the two 
metrices. 

Let us understand this with an 
example. If we are evaluating a test 
for detecting patients with diabetes, 

we could have in our “disease” 
population, patients with very 
mild diabetes at one end to severe 
or even uncontrolled diabetes at 
the other end of the spectrum. Any 
diagnostic test study that limits the 
diabetic patients to the “sickest 
of the sick” will overestimate the 
sensitivity of a test, while similarly, 
another study that uses only the 
“wellest of the well” [those who 
are truly non-diabetic; for instance, 
the very young] will overestimate 
specificity.18 

Another bias is the “imperfect 
gold standard” bias.19 When a new 
test [also called as the index test] 
is being tested, it  is compared 
with an existing “gold standard” 
or reference test. An ideal gold 
standard test would be one that 
“rules in” ALL patients with disease 
and “rules out” ALL those without. 
Unfortunately, gold standards are 
rarely perfect and can themselves 
misclassify those with and without 
disease leading to what we call an 
“imperfect gold standard”. Let us 
understand this with the example of 
malaria diagnosis. The current gold 
standard is the peripheral smear. 
In the hands of trained and expert 
technicians, the test sensitivity 
is 50 parasites/ml of blood and 
results are made available within 
30 minutes.20 The use of this “gold 
standard” will  logically result 
in declaring parasitemias of less 
than 50parasi tes/ml as  falsely 
negative. The polymerase chain 
reaction [PCR], on the other hand, 
that detects specific nucleic acid 
sequences  of  the  paras i te  has 
a much higher sensitivity at  5 
parasites/ml. However, it is time 
consuming, technically demanding, 

Table 3: A 2 x 2 table depicting the 
calculation of the diagnostic 
odds ratio as a cross product 
ratio

Disease 
present 

Disease 
absent

Test positive TP FP
Test negative FN TN

Table 4:  Diagnostic odds ratios for varying combinations of sensitivity and 
specificity13

Specificity 
[%]

Sensitivity [%]
50 60 70 80 90 95 99

50 1 2 2 4 9 19 99
60 2 2 4 6 14 29 149
70 2 4 5 9 21 44 231
80 4 6 9 16 36 76 396
90 9 14 21 36 81 171 891
95 19 29 44 76 171 361 1881
99 99 149 231 396 891 1881 9801
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expensive and also detects non 
-v iable  paras i tes  that  may be 
present even after successful anti-
malarial treatment and can confuse 
the treating physician.21 Thus, with 
its inherent limitations of much 
lower sensitivity [relative to the 
PCR], the peripheral smear still 
remains the “gold standard” [albeit 
imperfect] for the diagnosis of 
malaria. Some other biases include 
uninterpretable or indeterminate 
test bias and inter-observer bias.10

Conclusions

Few topics in the medical field 
are more important than screening 
and diagnostic tests as these are 
ordered nearly every day as an 
important aid to clinical decision 
making. Diagnoses are made based 
on a combination of patient history 
and physical examination. Tests 
are often ordered to confirm initial 
impressions or rule out alternatives, 
and it is estimated that 10% of all 
diagnoses are not considered final 
until clinical laboratory testing 
is complete.22 The utility of any 
test must be assessed bearing in 
mind its discriminatory ability [to 
distinguish between health and 
disease], the nature and severity 
of the disease under question, the 
ease of availability of the tests and 
risks associated with their use, 
understanding the several diverse 
metrics [with their limitations] that 
go into interpreting the results, cost 
considerations and finally impact 
on patient management based on 
the results of the test. 

Research studies that publish 
findings using diagnostic tests 
m u s t  b e  c r i t i c a l l y  a p p r a i s e d 
using the STARD criteria as also 
an appreciation of whether the 
population on whom the test was 
used is similar or different from the 
one that a physician actually sees in 
his practice. Finally, laboratorians 
who carry out diagnostic testing, 

clinicians who treat patients and 
clinician- researchers who interpret 
evidence need to work in tandem. 
This  enables  better  l inkage of 
results of the diagnostic testing 
with the patient. When coupled 
with cont inued monitoring of 
the effectiveness of these tests, 
we would ensure both optimal 
outcomes for an individual patient 
as also decisions that would drive 
health policy for nations.
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